
PART 1 
 

Introduction to Deep Learning 
& 

Deep Belief Nets 



A spectrum of machine learning tasks 

•  Low-dimensional data (e.g. 
less than 1000 dimensions) 

•  Lots of noise in the data  

•  There is not much structure in 
the data, and what structure 
there is, can be represented by 
a fairly simple model. 

•  The main problem is 
distinguishing true structure 
from noise.  

•  High-dimensional data (e.g. 
more than 1000 dimensions) 

•  The noise is not sufficient to 
obscure the structure in the 
data if we process it right. 

•  There is a huge amount of 
structure in the data, but the 
structure is too complicated to 
be represented by a simple 
model (e.g. the mapping from 
images to captions).  

•  The main problem is figuring 
how to represent the 
complicated structure in a way 
that allows it to be learned. e.g. 

Typical Statistics------------Artificial Intelligence 



A brief history of deep learning 

•  The backpropagation algorithm for learning 
multiple layers of non-linear features was 
invented several times in the 1970’s and 1980’s 
(Werbos, Amari?, Parker, LeCun, Rumelhart et. al.) 

•  Backprop clearly had great promise, but by the 
1990’s people in machine learning had largely 
given up on it because: 
–   It did not seem to be able to make good use 

of multiple hidden layers (except in “time-
delay” and convolutional nets). 

–  It did not work well in recurrent networks. 



How to learn many layers of features (~1985) 

input vector 

hidden 
layers 

outputs 

Back-propagate                
error signal to 
get derivatives 
for learning 

Compare outputs with 
correct answer to get 
error signal 



What is wrong with back-propagation? 

•  It requires labeled training data. 
– Almost all data is unlabeled.   

•  The learning time does not scale well 
– It is very slow in networks with multiple 

hidden layers. Why? 
•  It can get stuck in poor local optima. 

– These are often quite good, but for deep 
nets they are far from optimal. 
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Two major issues in deep learning  
that I will not discuss 

•  Deep vs Shallow 
– Are deep nets really needed?  (yes) 
– What can be proved? (not much) 

•  How do we map a task onto a neural network? 
– Attention and recursion. 
–  Intelligent fixations vs brute force scanning. 

 



Overcoming the limitations of  back-propagation 
by using unsupervised learning 

 
•  Keep the efficiency and simplicity of using a 

gradient method for adjusting the weights, but use 
it for modeling the structure of the sensory input. 
– Adjust the weights to maximize the probability 

that a generative model would have produced 
the sensory input.  

– Learn p(image)  not  p(label | image) 
•  If you want to do computer vision, first learn 

computer graphics 
•  What kind of generative model should we learn? 



Stochastic binary units (an odd choice) 

•  These have a state of 1 
or 0. 

•  The probability of 
turning on is determined 
by the weighted input 
from other units (plus a 
bias) 
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 Learning Deep Belief Nets 
•  It is easy to generate an 

unbiased example at the 
leaf nodes, so we can see 
what kinds of data the 
network believes in.  

•  It is hard to infer the 
posterior distribution over 
all  possible configurations 
of hidden causes. 

•  It is hard to even get  a 
sample from the posterior. 

•  So how can we learn deep 
belief nets that have 
millions of parameters? 

stochastic 
hidden        
cause 

visible  
effect 



Explaining away (Judea Pearl) 

•  Even if two hidden causes are independent, they can 
become dependent when we observe an effect that they can 
both influence.  
–  If we learn that there was an earthquake it reduces the 

probability that the house jumped because of a truck. 

truck hits house earthquake 

house jumps 

20 20 

-20 

-10 -10 

  
p(1,1)=.0001 
p(1,0)=.4999 
p(0,1)=.4999 
p(0,0)=.0001 

posterior 
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Why it is usually very hard to learn     
sigmoid belief nets one layer at a time 

•  To learn W, we need the posterior 
distribution in the first hidden layer. 

•  Problem 1: The posterior is typically 
complicated because of “explaining 
away”. 

•  Problem 2: The posterior depends 
on the prior as well as the likelihood.  
–  So to learn W, we need to know 

the weights in higher layers, even 
if we are only approximating the 
posterior. All the weights interact. 

•  Problem 3: We need to integrate 
over all possible configurations of 
the higher variables to get the prior 
for first hidden layer. Its hopeless! 

 

          data 

hidden variables 

hidden variables 

hidden variables 

  likelihood W 

prior 



A breakthrough that makes deep 
learning efficient 

•  To learn deep nets efficiently, we need to learn one layer 
of features at a time. This does not work well if we 
assume that the latent variables are independent in the 
prior : 
–  The latent variables are not independent in the 

posterior  so inference is hard for non-linear models. 
–   The learning tries to find independent causes using 

one hidden layer which is not usually possible. 
•  We need a way of learning one layer at a time that takes 

into account  the fact that we will be learning more 
hidden layers later. 
–  We solve this problem by using an undirected model. 



•  The variables in h0 are conditionally 
independent given v0. 
–  Inference is trivial. We just 

multiply v0 by W transpose. 
–  The model above h0 implements 

a complementary prior. 
–  Multiplying v0 by W transpose 

gives the product of the likelihood 
term and the prior term. 

•  Inference in the directed net is 
exactly equivalent to letting a 
Restricted Boltzmann Machine settle 
to equilibrium starting at the data. 

Inference in a directed net 
with replicated weights 
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•  First learn with all the weights tied 
–  This is exactly equivalent to 

learning an RBM 
–  Contrastive divergence learning 

is equivalent to ignoring the small 
derivatives contributed by the tied 
weights between deeper layers. 

Learning a deep  
directed network 
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A restricted Boltzmann Machine 
An infinite sigmoid belief 
net with shared weights  



•  Then freeze the first layer of weights 
in both directions and learn the 
remaining weights (still tied 
together). 
–  This is equivalent to learning 

another RBM, using the 
aggregated posterior distribution 
of h0 as the data. 
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A picture of the maximum likelihood learning 
algorithm for an RBM 
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Start with a training vector on the visible units. 

Then alternate between updating all the hidden units in 
parallel and updating all the visible units in parallel. 

a fantasy 



A quick way to learn an RBM 
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Start with a training vector on the 
visible units. 

Update all the hidden units in 
parallel 

Update the all the visible units in 
parallel to get a “reconstruction”. 

Update the hidden units again.  

This is not following the gradient of the log likelihood. But it 
works well. It is approximately following the gradient of another 
objective function (Carreira-Perpinan & Hinton, 2005). 

reconstruction data 



PART 2: 
 

 The return of backpropagation 



Fine-tuning for discrimination 

•  First learn one layer at a time greedily. 
•  Then treat this as “pre-training” that finds a 

good initial set of weights. 
•  Backpropagation can then be used to fine-tune 

the model for better discrimination. 
– This overcomes many of the limitations of 

standard backpropagation. 



Acoustic modeling with a DNN pre-trained as a 
deep belief net (Mohamed, Dahl & Hinton 2009) 

 
–   After the standard 

post-processing using 
a bi-phone model this 
gets 23.0% phone 
error rate. 

–  The best previous 
result on TIMIT was 
24.4% and this 
required averaging 
several models. 

11 frames of 
39 MFCC’s 

2000 binary hidden units  

2000 binary hidden units  

2000 binary hidden units  

2000 binary hidden units  

183 labels 

not pre-trained 

We can do much better now 
using less pre-processing. 
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Why backpropagation works better with 
greedy pre-training: The optimization view 

•  Greedily learning one layer at a time scales well 
to really big networks, especially if we have 
locality in each layer. 

•  We do not start backpropagation until we already 
have sensible feature detectors that should 
already be very helpful for the discrimination task. 
– So the initial gradients are sensible and 

backprop only needs to perform a local search 
from a sensible starting point. 



Why backpropagation works better with 
greedy pre-training: The overfitting view 

•  Most of the information in the final weights comes from 
modeling the distribution of input vectors.  
–  The input vectors  generally contain a lot more 

information than the labels. 
–  The precious information in the labels is only used for 

the final fine-tuning.  
–  The fine-tuning only modifies the features slightly to get 

the category boundaries right. It does not need to 
discover features. 

•  This type of backpropagation works well even if most of 
the training data is unlabeled.  
–  The unlabeled data is still very useful for discovering 

good features. 



Why unsupervised pre-training makes sense 

stuff 

image label 

stuff 

image label 

If image-label pairs were 
generated this way, it 
would make sense to try 
to go straight from 
images to labels.   
For example,  do the 
pixels have even parity? 

If image-label pairs are 
generated this way, it 
makes sense to first learn 
to recover the stuff that 
caused the image by 
inverting the high 
bandwidth pathway. 
 

high 
bandwidth 

low 
bandwidth 



Is unsupervised pre-training really 
necessary? 

•  It is not necessary for the optimization to work. 

•  It helps a lot with the generalization if you do not 
have much labelled data compared with the 
number of parameters in your model. 

•  If you have enough computer power you should 
always be in the  parameters >> labels  regime.  
– Your brain has 10^14 synapses and you live 

for 10^9 seconds. 



The ILSVRC-2012 competition on ImageNet 

•  The dataset has 1.2 million 
high-resolution training 
images. 

•  There are 1000 different 
classes of object. 

•  The task is to get the 
“correct” class in your top 
5 bets.  

•  Some of the best existing 
computer vision methods 
were  tried on this dataset 
by leading computer 
vision groups from 
Oxford, INRIA, XRCE, … 
–  Computer vision 

systems in 2012 used 
complicated multi-stage 
systems with lots of 
hand-engineering. 

–  The early stages were 
typically tuned by 
optimizing a few 
parameters. 
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A neural network for ImageNet 
(terms in red will be explained later) 

•  Alex Krizhevsky et. al.  
(NIPS 2012) developed a 
very deep convolutional 
neural net (Le Cun 1987)  

•  Its architecture was: 
–  7 hidden layers not 

counting some            
max pooling layers. 

–  The early layers were 
convolutional. 

–  The last two layers were 
globally connected. 

 
•  The activation functions were 

rectified linear units in every 
hidden layer.  
–  These train much faster 

and are more expressive 
than logistic units. 

•  The globally connected 
layers had most of the 
parameters. 
–  Dropout was used to 

prevent these layers from 
overfitting 



Examples from the test set  
(with the network’s guesses) 



Error rates on the ILSVRC-2012 
competition 

•  University of Tokyo  
•               
•  Oxford University Computer Vision 

Group 
•  INRIA (French national research 

institute in CS) + XRCE (Xerox 
Research Center Europe)   

•  University of Amsterdam 

•  26.1%  
•             
•  26.9%   
•            
•  27.0% 

•  29.5%      

•  University of Toronto (Krizhevsky et. al.) •  16.4% 



Convolutional Neural Nets  
(currently the dominant approach for object recognition) 

•  Use many different copies of the same 
feature detector with different positions. 
–  Could also replicate across scale and 

orientation (but tricky and expensive) 
–  Replication greatly reduces the number 

of free parameters to be learned. 

•  Use several different feature types, each 
with its own map of replicated detectors. 
–  Allows each patch of the image to be 

represented in several ways. 
 

The red connections all 
have the same weight. 



Backpropagation with weight constraints 

•  It’s easy to modify the 
backpropagation algorithm 
to incorporate linear 
constraints between the 
weights. 

•  We compute the gradients 
as usual, and then modify 
the gradients so that they 
satisfy the constraints. 
–  So if the weights started 

off satisfying the 
constraints, they will 
continue to satisfy them. 

To constrain : w1 = w2
we need : Δw1 = Δw2

compute : ∂E
∂w1

and ∂E
∂w2

use ∂E
∂w1

+
∂E
∂w2

for w1 and w2
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Pooling the outputs of replicated feature detectors 

•  Get a small amount of translational invariance at 
each level by averaging four neighboring replicated 
detectors to give a single output to the next level. 

–  This reduces the number of inputs to the next 
layer of feature extraction, thus allowing us to 
have many more different feature maps. 

–  Taking the maximum of the four works better. 
 



Rectified linear units 

•  Instead of using the logistic sigmoid as the non-
linearity of a neuron, use rectification: 

              y = max(0, x) 
 
 
 
 
 
This non-linearity makes deep nets much easier to 
train and much better at dealing with real values. 
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Dropout: An efficient way to average 
many large neural nets. 

•  Consider a neural net with 
one hidden layer. 

•  Each time we present a 
training example, we 
randomly omit each hidden 
unit with probability 0.5. 

•  So we are randomly 
sampling from 2^H 
different architectures. 
– All architectures share 

weights. 



Dropout as a form of model averaging 

•  We sample from 2^H models. So only a few of 
the models ever get trained, and they only get 
one training example. 

•  The sharing of the weights means that every 
model is very strongly regularized. 
–  It’s a much better regularizer than just trying 

to keep the weights small. 



But what do we do at test time? 

•  We could sample many different architectures 
and take the geometric mean of their output 
distributions. 

•  It better to use all of the hidden units, but to 
halve their outgoing weights. 
– This exactly computes the geometric mean of 

the predictions of all 2^H models. 
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What if we have more hidden layers? 

•  Use dropout of 0.5 in every layer. 

•  At test time, use the “mean net” that has all the 
outgoing weights halved. 

•  This is not exactly the same as averaging all the 
separate dropped out models, but it’s a pretty 
good approximation, and its fast. 



What about the input layer? 

•  It helps to use dropout there too, but with a 
higher probability of keeping an input unit. 
– This trick is already used by the “denoising 

autoencoders” developed in Yoshua Bengio’s 
group. 

•  One form of dropout in the input layer is to only 
look at a large randomly selected patch of the 
image. 
– This creates a lot more training examples! 



What was actually wrong with 
backpropagation in 1986? 

•  We all drew the wrong conclusions about why it failed.  
The real reasons were: 

1.  Our labeled datasets were thousand of times too small. 
2.  Our computers were millions of times too slow. 
3.  We initialized the weights in a stupid way. 
4.  We used the wrong type of non-linearity. 
 
A few years ago, Jeff Dean decided that with enough 
computation, neural networks might do amazing things. 
He built a lot of infrastructure to make it possible to train big 
nets on lots of data. It is beginning to look as if he was right. 



PART 3: 
 

 Recurrent Neural Networks 
(with many of the details suppressed for clarity) 



Recurrent Neural 
 Networks 

•  RNNs are very powerful, 
because they combine two 
properties: 
–  Distributed hidden state that 

allows them to store a lot of 
information about the past 
efficiently. 

–  Non-linear dynamics that 
allows them to update their 
hidden state in complicated 
ways. 

–  Deep ones work even better.  

input 

input 

input 

hidden 

hidden 

hidden 

output 

output 

output 

time à 

hidden 

hidden 

hidden 
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Back-propagation through time 

•  The connections in a recurrent net form a 
directed acyclic graph. 

•  Back-propagation through the DAG can be used 
to train the weights. 
– Targets can be provided for “output” neurons 

at any time-step. 
– The weights are shared over time so they add 

up the derivatives they get over all time-steps. 



A radically new way to do machine translation 
(Suskever, Vinyals and Le, 2014) 

•  For each language we have a deep encoder RNN 
and a deep decoder RNN. 

•  The encoder RNN for the source language reads 
in the sequence of words in the source sentence. 
–  Its final hidden state represents the thought that 

the sentence expresses.  



The deep decoder RNN 

•  The decoder RNN for 
the target language 
starts with the thought 
produced by the encoder 
RNN. 

•  It defines a distribution 
over sentences in the 
target language.  

w
ordvec 1 

w
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How the decoder RNN specifies 
a distribution over translations 

•  First it outputs a probability 
distribution over possible first words. 

•  We pick a word from this distribution 
and feed it back into the RNN as an 
input. 

•  Given this first word, it then specifies 
a distribution over second words. 

•  Continue until you pick a full stop. 
  
•  During training, we only need to 

input the “correct” words. 
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How the encoder and decoder 
networks are trained 

•  Given a sentence pair, use back-propagation through time 
to maximize the log probability of producing the specified 
translation. 

•  Currently this system has only been trained for one pair of 
languages. 
–  It already beats the state-of-the-art on that data. 
–  It took less than one person year to develop. 

•  It will do much better when we use more data and jointly 
train encoders and decoders for many languages 
simultaneously.  
–  The European parliament gives 25-way stereo for the 

thought.  We can backprop through all 25 decoders. 
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Combining vision and language 
(a simplified account of recent work by Vinyals et. al.) 

•  The activity vector in the last hidden layer of a deep 
convolutional net trained on ImageNet is a “percept” that 
encodes what is in the image. 

•  Map this percept to the initial hidden state of a deep 
recurrent neural net. 

•  Train the RNN to say what it sees in the image.  
–   Use an additional set of 200,000 images that each 

come with several captions (MS-COCO). 
–  Do not retrain the convnet 

 









THE  END 


