
PART 1

Introduction to Deep Learning
&

Deep Belief Nets

A spectrum of machine learning tasks

•  Low-dimensional data (e.g.
less than 1000 dimensions)

•  Lots of noise in the data

•  There is not much structure in
the data, and what structure
there is, can be represented by
a fairly simple model.

•  The main problem is
distinguishing true structure
from noise.

•  High-dimensional data (e.g.
more than 1000 dimensions)

•  The noise is not sufficient to
obscure the structure in the
data if we process it right.

•  There is a huge amount of
structure in the data, but the
structure is too complicated to
be represented by a simple
model (e.g. the mapping from
images to captions).

•  The main problem is figuring
how to represent the
complicated structure in a way
that allows it to be learned. e.g.

Typical Statistics------------Artificial Intelligence

A brief history of deep learning

•  The backpropagation algorithm for learning
multiple layers of non-linear features was
invented several times in the 1970’s and 1980’s
(Werbos, Amari?, Parker, LeCun, Rumelhart et. al.)

•  Backprop clearly had great promise, but by the
1990’s people in machine learning had largely
given up on it because:
–  It did not seem to be able to make good use

of multiple hidden layers (except in “time-
delay” and convolutional nets).

–  It did not work well in recurrent networks.

How to learn many layers of features (~1985)

input vector

hidden
layers

outputs

Back-propagate
error signal to
get derivatives
for learning

Compare outputs with
correct answer to get
error signal

What is wrong with back-propagation?

•  It requires labeled training data.
– Almost all data is unlabeled.

•  The learning time does not scale well
– It is very slow in networks with multiple

hidden layers. Why?
•  It can get stuck in poor local optima.

– These are often quite good, but for deep
nets they are far from optimal.

5

Two major issues in deep learning
that I will not discuss

•  Deep vs Shallow
– Are deep nets really needed? (yes)
– What can be proved? (not much)

•  How do we map a task onto a neural network?
– Attention and recursion.
–  Intelligent fixations vs brute force scanning.

Overcoming the limitations of back-propagation
by using unsupervised learning

•  Keep the efficiency and simplicity of using a

gradient method for adjusting the weights, but use
it for modeling the structure of the sensory input.
– Adjust the weights to maximize the probability

that a generative model would have produced
the sensory input.

– Learn p(image) not p(label | image)
•  If you want to do computer vision, first learn

computer graphics
•  What kind of generative model should we learn?

Stochastic binary units (an odd choice)

•  These have a state of 1
or 0.

•  The probability of
turning on is determined
by the weighted input
from other units (plus a
bias)

0
0

1

∑−−+
==

j
jiji

i wsb
sp

)exp(1
)(1
1

∑+
j

jiji wsb

)(1=isp

 Learning Deep Belief Nets
•  It is easy to generate an

unbiased example at the
leaf nodes, so we can see
what kinds of data the
network believes in.

•  It is hard to infer the
posterior distribution over
all possible configurations
of hidden causes.

•  It is hard to even get a
sample from the posterior.

•  So how can we learn deep
belief nets that have
millions of parameters?

stochastic
hidden
cause

visible
effect

Explaining away (Judea Pearl)

•  Even if two hidden causes are independent, they can
become dependent when we observe an effect that they can
both influence.
–  If we learn that there was an earthquake it reduces the

probability that the house jumped because of a truck.

truck hits house earthquake

house jumps

20 20

-20

-10 -10

p(1,1)=.0001
p(1,0)=.4999
p(0,1)=.4999
p(0,0)=.0001

posterior

10

Why it is usually very hard to learn
sigmoid belief nets one layer at a time

•  To learn W, we need the posterior
distribution in the first hidden layer.

•  Problem 1: The posterior is typically
complicated because of “explaining
away”.

•  Problem 2: The posterior depends
on the prior as well as the likelihood.
–  So to learn W, we need to know

the weights in higher layers, even
if we are only approximating the
posterior. All the weights interact.

•  Problem 3: We need to integrate
over all possible configurations of
the higher variables to get the prior
for first hidden layer. Its hopeless!

 data

hidden variables

hidden variables

hidden variables

 likelihood W

prior

A breakthrough that makes deep
learning efficient

•  To learn deep nets efficiently, we need to learn one layer
of features at a time. This does not work well if we
assume that the latent variables are independent in the
prior :
–  The latent variables are not independent in the

posterior so inference is hard for non-linear models.
–  The learning tries to find independent causes using

one hidden layer which is not usually possible.
•  We need a way of learning one layer at a time that takes

into account the fact that we will be learning more
hidden layers later.
–  We solve this problem by using an undirected model.

•  The variables in h0 are conditionally
independent given v0.
–  Inference is trivial. We just

multiply v0 by W transpose.
–  The model above h0 implements

a complementary prior.
–  Multiplying v0 by W transpose

gives the product of the likelihood
term and the prior term.

•  Inference in the directed net is
exactly equivalent to letting a
Restricted Boltzmann Machine settle
to equilibrium starting at the data.

Inference in a directed net
with replicated weights

W
 v1

 h1

 v0

 h0

 v2

 h2

TW

TW

TW

W

W

etc.

+

+

+

+

•  First learn with all the weights tied
–  This is exactly equivalent to

learning an RBM
–  Contrastive divergence learning

is equivalent to ignoring the small
derivatives contributed by the tied
weights between deeper layers.

Learning a deep
directed network

W

W
 v1

 h1

 v0

 h0

 v2

 h2

TW

TW

TW

W

etc.

 v0

 h0
W

A restricted Boltzmann Machine
An infinite sigmoid belief
net with shared weights

•  Then freeze the first layer of weights
in both directions and learn the
remaining weights (still tied
together).
–  This is equivalent to learning

another RBM, using the
aggregated posterior distribution
of h0 as the data.

W
 v1

 h1

 v0

 h0

 v2

 h2

TW

TW

TW

W

etc.

frozenW

 v1

 h0

W

T
frozenW

15

A picture of the maximum likelihood learning
algorithm for an RBM

0>< jihv ∞>< jihv

i

j

i

j

i

j

i

j

t = 0 t = 1 t = 2 t = infinity

∞><−><=
∂

∂
jiji

ij
hvhv

w
vp 0)(log

Start with a training vector on the visible units.

Then alternate between updating all the hidden units in
parallel and updating all the visible units in parallel.

a fantasy

A quick way to learn an RBM

0>< jihv 1>< jihv

i

j

i

j

t = 0 t = 1

)(10 ><−><=Δ jijiij hvhvw ε

Start with a training vector on the
visible units.

Update all the hidden units in
parallel

Update the all the visible units in
parallel to get a “reconstruction”.

Update the hidden units again.

This is not following the gradient of the log likelihood. But it
works well. It is approximately following the gradient of another
objective function (Carreira-Perpinan & Hinton, 2005).

reconstruction data

PART 2:

 The return of backpropagation

Fine-tuning for discrimination

•  First learn one layer at a time greedily.
•  Then treat this as “pre-training” that finds a

good initial set of weights.
•  Backpropagation can then be used to fine-tune

the model for better discrimination.
– This overcomes many of the limitations of

standard backpropagation.

Acoustic modeling with a DNN pre-trained as a
deep belief net (Mohamed, Dahl & Hinton 2009)

–  After the standard

post-processing using
a bi-phone model this
gets 23.0% phone
error rate.

–  The best previous
result on TIMIT was
24.4% and this
required averaging
several models.

11 frames of
39 MFCC’s

2000 binary hidden units

2000 binary hidden units

2000 binary hidden units

2000 binary hidden units

183 labels

not pre-trained

We can do much better now
using less pre-processing.

20

Why backpropagation works better with
greedy pre-training: The optimization view

•  Greedily learning one layer at a time scales well
to really big networks, especially if we have
locality in each layer.

•  We do not start backpropagation until we already
have sensible feature detectors that should
already be very helpful for the discrimination task.
– So the initial gradients are sensible and

backprop only needs to perform a local search
from a sensible starting point.

Why backpropagation works better with
greedy pre-training: The overfitting view

•  Most of the information in the final weights comes from
modeling the distribution of input vectors.
–  The input vectors generally contain a lot more

information than the labels.
–  The precious information in the labels is only used for

the final fine-tuning.
–  The fine-tuning only modifies the features slightly to get

the category boundaries right. It does not need to
discover features.

•  This type of backpropagation works well even if most of
the training data is unlabeled.
–  The unlabeled data is still very useful for discovering

good features.

Why unsupervised pre-training makes sense

stuff

image label

stuff

image label

If image-label pairs were
generated this way, it
would make sense to try
to go straight from
images to labels.
For example, do the
pixels have even parity?

If image-label pairs are
generated this way, it
makes sense to first learn
to recover the stuff that
caused the image by
inverting the high
bandwidth pathway.

high
bandwidth

low
bandwidth

Is unsupervised pre-training really
necessary?

•  It is not necessary for the optimization to work.

•  It helps a lot with the generalization if you do not
have much labelled data compared with the
number of parameters in your model.

•  If you have enough computer power you should
always be in the parameters >> labels regime.
– Your brain has 10^14 synapses and you live

for 10^9 seconds.

The ILSVRC-2012 competition on ImageNet

•  The dataset has 1.2 million
high-resolution training
images.

•  There are 1000 different
classes of object.

•  The task is to get the
“correct” class in your top
5 bets.

•  Some of the best existing
computer vision methods
were tried on this dataset
by leading computer
vision groups from
Oxford, INRIA, XRCE, …
–  Computer vision

systems in 2012 used
complicated multi-stage
systems with lots of
hand-engineering.

–  The early stages were
typically tuned by
optimizing a few
parameters.

25

A neural network for ImageNet
(terms in red will be explained later)

•  Alex Krizhevsky et. al.
(NIPS 2012) developed a
very deep convolutional
neural net (Le Cun 1987)

•  Its architecture was:
–  7 hidden layers not

counting some
max pooling layers.

–  The early layers were
convolutional.

–  The last two layers were
globally connected.

•  The activation functions were

rectified linear units in every
hidden layer.
–  These train much faster

and are more expressive
than logistic units.

•  The globally connected
layers had most of the
parameters.
–  Dropout was used to

prevent these layers from
overfitting

Examples from the test set
(with the network’s guesses)

Error rates on the ILSVRC-2012
competition

•  University of Tokyo
• 
•  Oxford University Computer Vision

Group
•  INRIA (French national research

institute in CS) + XRCE (Xerox
Research Center Europe)

•  University of Amsterdam

•  26.1%
• 
•  26.9%
• 
•  27.0%

•  29.5%

•  University of Toronto (Krizhevsky et. al.) •  16.4%

Convolutional Neural Nets
(currently the dominant approach for object recognition)

•  Use many different copies of the same
feature detector with different positions.
–  Could also replicate across scale and

orientation (but tricky and expensive)
–  Replication greatly reduces the number

of free parameters to be learned.

•  Use several different feature types, each
with its own map of replicated detectors.
–  Allows each patch of the image to be

represented in several ways.

The red connections all
have the same weight.

Backpropagation with weight constraints

•  It’s easy to modify the
backpropagation algorithm
to incorporate linear
constraints between the
weights.

•  We compute the gradients
as usual, and then modify
the gradients so that they
satisfy the constraints.
–  So if the weights started

off satisfying the
constraints, they will
continue to satisfy them.

To constrain : w1 = w2
we need : Δw1 = Δw2

compute : ∂E
∂w1

and ∂E
∂w2

use ∂E
∂w1

+
∂E
∂w2

for w1 and w2

30

Pooling the outputs of replicated feature detectors

•  Get a small amount of translational invariance at
each level by averaging four neighboring replicated
detectors to give a single output to the next level.

–  This reduces the number of inputs to the next
layer of feature extraction, thus allowing us to
have many more different feature maps.

–  Taking the maximum of the four works better.

Rectified linear units

•  Instead of using the logistic sigmoid as the non-
linearity of a neuron, use rectification:

 y = max(0, x)

This non-linearity makes deep nets much easier to
train and much better at dealing with real values.

0

Dropout: An efficient way to average
many large neural nets.

•  Consider a neural net with
one hidden layer.

•  Each time we present a
training example, we
randomly omit each hidden
unit with probability 0.5.

•  So we are randomly
sampling from 2^H
different architectures.
– All architectures share

weights.

Dropout as a form of model averaging

•  We sample from 2^H models. So only a few of
the models ever get trained, and they only get
one training example.

•  The sharing of the weights means that every
model is very strongly regularized.
–  It’s a much better regularizer than just trying

to keep the weights small.

But what do we do at test time?

•  We could sample many different architectures
and take the geometric mean of their output
distributions.

•  It better to use all of the hidden units, but to
halve their outgoing weights.
– This exactly computes the geometric mean of

the predictions of all 2^H models.

35

What if we have more hidden layers?

•  Use dropout of 0.5 in every layer.

•  At test time, use the “mean net” that has all the
outgoing weights halved.

•  This is not exactly the same as averaging all the
separate dropped out models, but it’s a pretty
good approximation, and its fast.

What about the input layer?

•  It helps to use dropout there too, but with a
higher probability of keeping an input unit.
– This trick is already used by the “denoising

autoencoders” developed in Yoshua Bengio’s
group.

•  One form of dropout in the input layer is to only
look at a large randomly selected patch of the
image.
– This creates a lot more training examples!

What was actually wrong with
backpropagation in 1986?

•  We all drew the wrong conclusions about why it failed.
The real reasons were:

1. Our labeled datasets were thousand of times too small.
2. Our computers were millions of times too slow.
3. We initialized the weights in a stupid way.
4. We used the wrong type of non-linearity.

A few years ago, Jeff Dean decided that with enough
computation, neural networks might do amazing things.
He built a lot of infrastructure to make it possible to train big
nets on lots of data. It is beginning to look as if he was right.

PART 3:

 Recurrent Neural Networks
(with many of the details suppressed for clarity)

Recurrent Neural
 Networks

•  RNNs are very powerful,
because they combine two
properties:
–  Distributed hidden state that

allows them to store a lot of
information about the past
efficiently.

–  Non-linear dynamics that
allows them to update their
hidden state in complicated
ways.

–  Deep ones work even better.

input

input

input

hidden

hidden

hidden

output

output

output

time à

hidden

hidden

hidden

40

Back-propagation through time

•  The connections in a recurrent net form a
directed acyclic graph.

•  Back-propagation through the DAG can be used
to train the weights.
– Targets can be provided for “output” neurons

at any time-step.
– The weights are shared over time so they add

up the derivatives they get over all time-steps.

A radically new way to do machine translation
(Suskever, Vinyals and Le, 2014)

•  For each language we have a deep encoder RNN
and a deep decoder RNN.

•  The encoder RNN for the source language reads
in the sequence of words in the source sentence.
–  Its final hidden state represents the thought that

the sentence expresses.

The deep decoder RNN

•  The decoder RNN for
the target language
starts with the thought
produced by the encoder
RNN.

•  It defines a distribution
over sentences in the
target language.

w
ordvec 1

w
ordvec 2

thought

hidden

hidden

distribution 1

distribution 2

distribution 3

w
ord 1

w
ord 2

How the decoder RNN specifies
a distribution over translations

•  First it outputs a probability
distribution over possible first words.

•  We pick a word from this distribution
and feed it back into the RNN as an
input.

•  Given this first word, it then specifies
a distribution over second words.

•  Continue until you pick a full stop.

•  During training, we only need to

input the “correct” words.

w
ordvec 1

w
ordvec 2

thought

hidden

hidden

distribution 1

distribution 2

distribution 3

w
ord 1

w
ord 2

How the encoder and decoder
networks are trained

•  Given a sentence pair, use back-propagation through time
to maximize the log probability of producing the specified
translation.

•  Currently this system has only been trained for one pair of
languages.
–  It already beats the state-of-the-art on that data.
–  It took less than one person year to develop.

•  It will do much better when we use more data and jointly
train encoders and decoders for many languages
simultaneously.
–  The European parliament gives 25-way stereo for the

thought. We can backprop through all 25 decoders.

45

Combining vision and language
(a simplified account of recent work by Vinyals et. al.)

•  The activity vector in the last hidden layer of a deep
convolutional net trained on ImageNet is a “percept” that
encodes what is in the image.

•  Map this percept to the initial hidden state of a deep
recurrent neural net.

•  Train the RNN to say what it sees in the image.
–  Use an additional set of 200,000 images that each

come with several captions (MS-COCO).
–  Do not retrain the convnet

THE END

