List Decoding of Error Correcting Codes

Madhu Sudan

Laboratory for Computer Science MIT

The Problem of Information Transmission

- Want to transmit digital information over noisy channel.
- How to overcome noise and achieve reliable communication?

Shannon (1948)

- Model noise by probability distribution.
- Example: Binary symmetric channel (BSC)
- Parameter $p \in\left[0, \frac{1}{2}\right]$.
- Channel transmits bits.
- With probability $1-p$ bit transmitted faithfully, and with probability p bit flipped (independent of all other events).

Shannon's architecture

- Sender encodes k bits into n bits.
- Transmits n bit string on channel.
- Receiver decodes n bits into k bits.
- Rate of channel usage $=k / n$.

Shannon's theorem

- Every channel (in broad class) has a capacity s.t., transmitting at rate below capacity is feasible (recovers message with exponentially small error), and above capacity is infeasible.
- Example: Binary symmetric channel (p) has capacity 1 $H(p)$, where $H(p)$ is the binary entropy function.
$-p=0$ implies capacity $=1$.
$-p=\frac{1}{2}$ implies capacity $=0$.
$-p<\frac{1}{2}$ implies capacity >0.

$$
\left(q \text {-ary channel error threshold }=1-\frac{1}{q} .\right)
$$

Constructive versions

- Shannon's theory was non-constructive. Decoding takes exponential time.
- [Elias '55] gave polytime algorithms to achieve positive rate on every channel of positive capacity.
- [Forney '66] achieved any rate < capacity with polynomial time algorithms (and exponentially small error).
- Modern results (following [Spielman '96]) lead to linear time algorithms.

Hamming (1950)

- Modelled errors adversarially.
- Focussed on image of encoding function (the "Code").
- Introduced metric (Hamming distance) on range of encoding function. $d(x, y)=\#$ coordinates such that $x_{i} \neq y_{i}$.

Hamming (contd.)

- Noticed that for adversarial error (and guaranteed error recovery), distance of Code is important.

$$
\Delta(C)=\min _{x, y \in C}\{d(x, y)\}
$$

- Code of distance d corrects $(d-1) / 2$ errors.
$-\exists$ binary codes mapping k bits to $n=O(k)$ bits, with $\Delta(C) / n \rightarrow \frac{1}{2}$ [Gilbert '50s].
$-\Delta(C) / n>\frac{1}{2}$ implies $k=\log n$ [Plotkin '50s].

Gap between Hamming \& Shannon

- Shannon's theory: Can deal with channels that err with probability less than 50%.
- Hamming theory:
- Can correct $d / 2$ errors, with code of distance d.
- Binary code of positive rate has $d / n<1 / 2$.
- Conclude: Can correct less than 25% errors.

List-decoding

- Extend notion of decoding to allow "list" of the ℓ most likely candidates.
- Code C is (p, ℓ)-error-correcting, if it has decoding algorithm (of unbounded computational power) correcting $p n$ errors with lists of size ℓ. (Formally, $C \subseteq \Sigma^{n}$ is (p, ℓ)-error-correcting-code if $\forall r \in \Sigma^{n}$, at most ℓ codewords $c \in C$ satisfy $\Delta(r, c) \leq p \cdot n$.)
- Notion due to [Elias '57, Wozencraft '58]. C of distance d is $\left(\left(\frac{1}{2} \cdot \frac{d}{n}\right), 1\right)$-error-correcting.
- How many errors can we correct in this relaxed setting?

List-decoding and the gap between Hamming \& Shannon

- [Zyablov-Pinsker $\left.{ }^{\prime} 70 \mathrm{~s}\right] \forall \epsilon>0, \exists \ell<\infty$ and codes of rate $1-H(p)-\epsilon$ that are (p, ℓ)-error-correcting.
- Narrows gap between probabilistic and adversarial models:
- Either transmit at rate $1-H(p)$ and recover message, where p-fraction of error introduced by random noise.
- Or transmit at rate $1-H(p)$ and recover small list including message, where adversary introduces p fraction error.
- Catch: [ZP]-result non-constructive.

List-decoding: Algorithmic Results

- Problem highlighted by [Goldreich-Levin].
- First interesting poly-time algorithm in [S' 96]. Since then lots of work [Shokrollahi-Wasserman '97], [Guruswami-S.'98-00] etc.

Theorem $1 \forall \epsilon>0$, exists a binary code of rate $O\left(\epsilon^{4}\right)$ with polynomial time encoding algorithm and polynomial time list-decoding algorithm to decode from $\frac{1}{2}-\epsilon$ errors. (Generalizes to q-ary alphabet.)
(Analogous to [Elias] result in Shannon model.)

Reed-Solomon Codes \& List-decoding

Aside: What to do with a list of candidates?

- Answer 1: If noise is probabilistic, probability list contains two elements is very low, for reasonable noise models! (Note: Algorithm independent of model!)
- Answer 2: Can disambiguate elements of list, using small amount of extra information, if a second, more reliable channel is available. [Guruswami '03].
- Answer 3: If messages are appropriately encrypted, then error-channel has to solve hard problems to create confusion. [Lipton et al., Micali et al.]

Reed-Solomon Codes \& List-decoding

Reed-Solomon Codes

Reed-Solomon Codes (formally)

- Let Σ be a finite field.
- Code specified by $k, n, \alpha_{1}, \ldots, \alpha_{n} \in \Sigma$.
- Message: $\left\langle c_{0}, \ldots, c_{k}\right\rangle \in \Sigma^{k+1}$ coefficients of degree k polynomial $p(x)=c_{0}+c_{1} x+\cdots c_{k} x^{k}$.
- Encoding: $p \mapsto\left\langle p\left(\alpha_{1}\right), \ldots, p\left(\alpha_{n}\right)\right\rangle$. $(k+1$ letters to n letters.)
- Degree k poly has at most k roots \Leftrightarrow Distance $d=n-k$.
- These are the Reed-Solomon codes. Best possible! Commonly used (CDs, DVDs etc.).

Reed-Solomon Decoding

Restatement of the problem:

- Input: n points $\left(\alpha_{i}, y_{i}\right) \in \mathbb{F}_{q}^{2} ; \quad$ agreement parameter t
- Output: All degree k polynomials $p(x)$ s.t. $p\left(\alpha_{i}\right)=y_{i}$ for at least t values of i.

We use $k=1$ for illustration.

- i.e. want all "lines" $(y-a x-b=0)$ that pass through $\geq t$ out of n points.

Algorithm Description: Example 1

$n=14$ points; Want all lines through at least 5 points.

0		0		0
0	0		0	
0	0		0	
0		0	0	

Algorithm Description: Example 1

$n=14$ points; Want all lines through at least 5 points.
Find deg. 4 poly. $Q(x, y) \not \equiv 0$
s.t. $Q\left(\alpha_{i}, y_{i}\right)=0$ for all points.

Algorithm Description: Example 1

$n=14$ points; Want all lines through at least 5 points.
Find deg. 4 poly. $Q(x, y) \not \equiv 0$ s.t. $Q\left(\alpha_{i}, y_{i}\right)=0$ for all points.
$Q(x, y)=y^{4}-x^{4}-y^{2}+x^{2}$
Let us plot all zeroes of $Q \ldots$

Algorithm Description: Example 1

$n=14$ points; Want all lines through at least 5 points.
Find deg. 4 poly. $Q(x, y) \not \equiv 0$ s.t. $Q\left(\alpha_{i}, y_{i}\right)=0$ for all points.
$Q(x, y)=y^{4}-x^{4}-y^{2}+x^{2}$
Let us plot all zeroes of $Q \ldots$

Algorithm Description: Example 1

$n=14$ points; Want all lines through at least 5 points.
Find deg. 4 poly. $Q(x, y) \not \equiv 0$
s.t. $Q\left(\alpha_{i}, y_{i}\right)=0$ for all points.
$Q(x, y)=y^{4}-x^{4}-y^{2}+x^{2}$
Let us plot all zeroes of $Q \ldots$
Both relevant lines emerge !

Formally, $Q(x, y)$ factors as: $\left(x^{2}+y^{2}-1\right)(y+x)(y-x)$.

What Happened?

1. Why did degree 4 curve exist?

- Counting argument (degree 4 gives enough degrees of freedom to pass through any 14 points)

2. Why did all the relevant lines emerge/factor out?

- Line ℓ intersects a deg. 4 curve Q in 5 points $\Longrightarrow \ell$ is a factor of Q

Generally

Lemma 1: $\exists Q$ with $\operatorname{deg}_{x}(Q), \operatorname{deg}_{y}(Q) \leq D=\sqrt{n}$ passing thru any n points.

Lemma 2: If Q with $\operatorname{deg}_{x}(Q), \operatorname{deg}_{y}(Q) \leq D$ intersects $y-$ $p(x)$ with $\operatorname{deg}(p) \leq d$ intersect in more that $(D+1) d$ points, then $y-p(x)$ divides Q.

Efficient algorithm?

1. Can find Q by solving system of linear equations
2. Fast algorithms for factorization of bivariate polynomials exist.

Thm: Can find polynomials having agreement $t \geq(k+1) \sqrt{n}$.

Can fine tune parameters a bit to get:
Thm: Can find polynomials having agreement $t \geq \sqrt{2 k n}$.
Does not meet combinatorial bounds!

Going Further: Example 2

Going Further: Example 2

Going Further: Example 2

$n=11$ points; Want all lines through ≥ 4 pts.
Fitting degree 4 curve Q as earlier doesn't work. Why?

Correct answer has 5 lines.

Degree 4 curve can't have
5 factors!

Going Further: Example 2

Going Further: Example 2

$n=11$ points; Want all lines through ≥ 4 pts.

Fit degree 7 poly. $Q(x, y)$ passing through each point twice.
$Q(x, y)=\cdots$
(margin too small) Plot all zeroes

Going Further: Example 2

$n=11$ points; Want all lines through $\geq 4 \mathrm{pts}$.

Fit degree 7 poly. $Q(x, y)$ passing through each point twice.
$Q(x, y)=\cdots$
Plot all zeroes
All lines emerge!

- Rutgers University, October 6, 2005 -

Where was the gain?

Can pass through each point twice with less than twice the degree!

In previous example: Passing through each point twice

- increased degree of Q from 4 to 7
- doubled \# intersections between "target" line ℓ and Q.
- $8>7$ so any such ℓ must factor out of Q. QED.

Decoding Algorithm Summary

Task: Find deg. k polys. p s.t. $p\left(\alpha_{i}\right)=y_{i}$ for $\geq t$ values of i.

- Pick suitable parameters, namely "degree" D of Q and multiplicity r of each point, such that $D \simeq$ $\sqrt{k n r(r+1)}$.
- Fit a "degree" D polynomial $Q(x, y)$ that passes through each point $\left(\alpha_{i}, y_{i}\right)$ at least r times.
- Factor $Q(x, y)$ and look for candidate polynomials p among factors of form $y-p(x)$. (If $t>D / r$, this will find all relevant polynomials p.)

Summary

With appropriate multiplicity, and appropriate "degree", get
Theorem: [Guruswami-S.'98]: Can solve decoding problem in polynomial time if $\#$ agreements $>\sqrt{k n}$.

Generalizations: Leads to nice definition of codes based on ideals in commutative rings.

An Additional Benefit

Can handle weighting of points (not conceivable earlier ...)

10	10		- 1	Sample question: Find lines through points
30	$\begin{aligned} & 2 \\ & 0 \end{aligned}$	$\begin{aligned} & 2 \\ & 0 \end{aligned}$		of total weight ≥ 7.
	$\bigcirc 1$		- 1	Solution strategy: Fit curve that passes thru pts
\bigcirc	\bigcirc	\bigcirc		in proportion to their weights
3	2	2		in proportion to their weights
\bigcirc			\bigcirc	
1			1	

Weighted Reed-Solomon Decoding

- Given: n points $\left(\alpha_{i}, y_{i}\right) \in \mathbb{F}_{q}^{2}$; and weights w_{i};

Agreement parameter W

- Task: Find all deg. k poly's p s.t. $\sum_{i: p\left(\alpha_{i}\right)=y_{i}} w_{i} \geq W$.

Thm [Guruswami-S.'98]: Can solve above efficiently if

$$
W>\sqrt{k \sum_{i} w_{i}^{2}} .
$$

- Left open in [GS'98]: When do weights make sense? What weights to use?

[Koetter-Vardy'01]: Algebraic Soft-Decision Decoding

- Starting Point: Weighted Reed-Solomon Decoding.
- Major Issues Addressed:
- How to assign weights for specific channels? Non-trivial, even for "trivial" channels.
- How to improve runtime (when running this complex procedure)?
- Consequence: Dramatic improvement in performance of RS codes, in some cases; "WSJT" (publicly available Ham Radio software) reports " 3 dB " gain using KV algorithm.

Summary

- List decoding is meaningful, useful, and feasible.
- Demonstrates that a little extra computational power can cope with much more errors.
- Already has changed the theoretical perspective on ability to cope with errors.
- Challenge ahead: Any more practical uses?

