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The Problem of Information Transmission

• Want to transmit digital information over noisy channel.

• How to overcome noise and achieve reliable communication?
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Shannon (1948)

• Model noise by probability distribution.

• Example: Binary symmetric channel (BSC)

− Parameter p ∈ [0, 1
2].

− Channel transmits bits.

− With probability 1 − p bit transmitted faithfully, and

with probability p bit flipped (independent of all other

events).
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Shannon’s architecture

• Sender encodes k bits into n bits.

• Transmits n bit string on channel.

• Receiver decodes n bits into k bits.

• Rate of channel usage = k/n.
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Shannon’s theorem

• Every channel (in broad class) has a capacity s.t.,

transmitting at rate below capacity is feasible (recovers

message with exponentially small error), and above

capacity is infeasible.

• Example: Binary symmetric channel (p) has capacity 1 −
H(p), where H(p) is the binary entropy function.

− p = 0 implies capacity = 1.

− p = 1
2 implies capacity = 0.

− p < 1
2 implies capacity > 0.

(q-ary channel error threshold = 1 − 1
q
.)
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Constructive versions

• Shannon’s theory was non-constructive. Decoding takes

exponential time.

• [Elias ’55] gave polytime algorithms to achieve positive

rate on every channel of positive capacity.

• [Forney ’66] achieved any rate < capacity with polynomial

time algorithms (and exponentially small error).

• Modern results (following [Spielman ’96]) lead to linear

time algorithms.
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Hamming (1950)

• Modelled errors adversarially.

• Focussed on image of encoding function (the “Code”).

• Introduced metric (Hamming distance) on range of

encoding function. d(x, y) = # coordinates such that

xi 6= yi.
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Hamming (contd.)

• Noticed that for adversarial error (and guaranteed error

recovery), distance of Code is important.

∆(C) = min
x,y∈C

{d(x, y)}.

• Code of distance d corrects (d − 1)/2 errors.

− ∃ binary codes mapping k bits to n = O(k) bits, with

∆(C)/n → 1
2 [Gilbert ’50s].

− ∆(C)/n > 1
2 implies k = log n [Plotkin ’50s].
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Gap between Hamming & Shannon

• Shannon’s theory: Can deal with channels that err with

probability less than 50%.

• Hamming theory:

− Can correct d/2 errors, with code of distance d.

− Binary code of positive rate has d/n < 1/2.

− Conclude: Can correct less than 25% errors.
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List-decoding

• Extend notion of decoding to allow “list” of the ℓ most

likely candidates.

• Code C is (p, ℓ)-error-correcting, if it has decoding

algorithm (of unbounded computational power) correcting

pn errors with lists of size ℓ. (Formally, C ⊆ Σn is (p, ℓ)-error-

correcting-code if ∀ r ∈ Σn, at most ℓ codewords c ∈ C satisfy ∆(r, c) ≤ p · n.)

• Notion due to [Elias ’57, Wozencraft ’58]. C of distance d

is ((1
2 · d

n
), 1)-error-correcting.

• How many errors can we correct in this relaxed setting?
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List-decoding and the gap between Hamming & Shannon

• [Zyablov-Pinsker ’70s] ∀ǫ > 0,∃ℓ < ∞ and codes of rate

1 − H(p) − ǫ that are (p, ℓ)-error-correcting.

• Narrows gap between probabilistic and adversarial models:

− Either transmit at rate 1 − H(p) and recover message,

where p-fraction of error introduced by random noise.

− Or transmit at rate 1 − H(p) and recover small list

including message, where adversary introduces p-

fraction error.

• Catch: [ZP]-result non-constructive.
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List-decoding: Algorithmic Results

• Problem highlighted by [Goldreich-Levin].

• First interesting poly-time algorithm in [S’ 96]. Since then

lots of work [Shokrollahi-Wasserman ’97], [Guruswami-

S.’98-00] etc.

Theorem 1 ∀ǫ > 0, exists a binary code of rate O(ǫ4)

with polynomial time encoding algorithm and polynomial

time list-decoding algorithm to decode from 1
2 − ǫ errors.

(Generalizes to q-ary alphabet.)

(Analogous to [Elias] result in Shannon model.)
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Reed-Solomon Codes & List-decoding



Aside: What to do with a list of candidates?

• Answer 1: If noise is probabilistic, probability list contains

two elements is very low, for reasonable noise models!

(Note: Algorithm independent of model!)

• Answer 2: Can disambiguate elements of list, using small

amount of extra information, if a second, more reliable

channel is available. [Guruswami ’03].

• Answer 3: If messages are appropriately encrypted,

then error-channel has to solve hard problems to create

confusion. [Lipton et al., Micali et al.]

– Rutgers University, October 6, 2005 – 13



Reed-Solomon Codes & List-decoding



Reed-Solomon Codes

m1

m2

m3

m4

x1 x2 x3 x4 x5 x6 x7 x8 x9

• Messages ≡ Polynomial.

• Encoding ≡ Evaluation

at x1, . . . , xn.

• n > Degree: Injective

• n ≫ Degree: Redundant
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Reed-Solomon Codes (formally)

• Let Σ be a finite field.

• Code specified by k, n, α1, . . . , αn ∈ Σ.

• Message: 〈c0, . . . , ck〉 ∈ Σk+1 coefficients of degree k

polynomial p(x) = c0 + c1x + · · · ckx
k.

• Encoding: p 7→ 〈p(α1), . . . , p(αn)〉. (k + 1 letters to n

letters.)

• Degree k poly has at most k roots ⇔ Distance d = n−k.

• These are the Reed-Solomon codes. Best possible!

Commonly used (CDs, DVDs etc.).
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Reed-Solomon Decoding

Restatement of the problem:

Input: n points (αi, yi) ∈ F
2
q; agreement parameter t

Output: All degree k polynomials p(x) s.t. p(αi) = yi for

at least t values of i.

We use k = 1 for illustration.

i.e. want all “lines” (y − ax− b = 0) that pass through

≥ t out of n points.
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Algorithm Description: Example 1

n = 14 points; Want all lines through at least 5 points.
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Algorithm Description: Example 1

n = 14 points; Want all lines through at least 5 points.

Find deg. 4 poly. Q(x, y) 6≡ 0

s.t. Q(αi, yi) = 0 for all points.
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Algorithm Description: Example 1

n = 14 points; Want all lines through at least 5 points.

Find deg. 4 poly. Q(x, y) 6≡ 0

s.t. Q(αi, yi) = 0 for all points.

Q(x, y) = y4 − x4 − y2 + x2

Let us plot all zeroes of Q ...
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Algorithm Description: Example 1

n = 14 points; Want all lines through at least 5 points.

Find deg. 4 poly. Q(x, y) 6≡ 0

s.t. Q(αi, yi) = 0 for all points.

Q(x, y) = y4 − x4 − y2 + x2

Let us plot all zeroes of Q ...
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Algorithm Description: Example 1

n = 14 points; Want all lines through at least 5 points.

Find deg. 4 poly. Q(x, y) 6≡ 0

s.t. Q(αi, yi) = 0 for all points.

Q(x, y) = y4 − x4 − y2 + x2

Let us plot all zeroes of Q ...

Both relevant lines emerge !

Formally, Q(x, y) factors as:

(x2 + y2 − 1)(y + x)(y − x).
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What Happened?

1. Why did degree 4 curve exist?
Counting argument (degree 4 gives enough degrees of

freedom to pass through any 14 points)

2. Why did all the relevant lines emerge/factor out?
Line ℓ intersects a deg. 4 curve Q in 5 points =⇒ ℓ is a

factor of Q
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Generally

Lemma 1: ∃Q with degx(Q), degy(Q) ≤ D =
√

n passing

thru any n points.

Lemma 2: If Q with degx(Q), degy(Q) ≤ D intersects y −
p(x) with deg(p) ≤ d intersect in more that (D+1)d points,

then y − p(x) divides Q.
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Efficient algorithm?

1. Can find Q by solving system of linear equations

2. Fast algorithms for factorization of bivariate polynomials

exist.

Thm: Can find polynomials having agreement t ≥ (k+1)
√

n.

Can fine tune parameters a bit to get:

Thm: Can find polynomials having agreement t ≥
√

2kn.

Does not meet combinatorial bounds!
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Going Further: Example 2

n = 11 points; Want all

lines through ≥ 4 pts.
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Going Further: Example 2

n = 11 points; Want all

lines through ≥ 4 pts.

Fitting degree 4 curve Q

as earlier doesn’t work.
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Going Further: Example 2

n = 11 points; Want all

lines through ≥ 4 pts.

Fitting degree 4 curve Q

as earlier doesn’t work.

Why?

Correct answer has 5 lines.

Degree 4 curve can’t have

5 factors!
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Going Further: Example 2

n = 11 points; Want all

lines through ≥ 4 pts.

Fit degree 7 poly. Q(x, y)

passing through each

point twice.

Q(x, y) = · · ·
(margin too small)

Plot all zeroes ...
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Going Further: Example 2

n = 11 points; Want all

lines through ≥ 4 pts.

Fit degree 7 poly. Q(x, y)

passing through each

point twice.

Q(x, y) = · · ·
(margin too small)

Plot all zeroes ....

– Rutgers University, October 6, 2005 – 29



Going Further: Example 2

n = 11 points; Want all

lines through ≥ 4 pts.

Fit degree 7 poly. Q(x, y)

passing through each

point twice.

Q(x, y) = · · ·
Plot all zeroes ....

All lines emerge!
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Where was the gain?

Can pass through each point

twice with less than twice the

degree!

In previous example: Passing through each point twice

increased degree of Q from 4 to 7

doubled # intersections between “target” line ℓ and Q.

8 > 7 so any such ℓ must factor out of Q. QED.
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Decoding Algorithm Summary

Task: Find deg. k polys. p s.t. p(αi) = yi for ≥ t values of

i.

Pick suitable parameters, namely “degree” D of Q

and multiplicity r of each point, such that D ≃
√

knr(r + 1).

Fit a “degree” D polynomial Q(x, y) that passes

through each point (αi, yi) at least r times.

Factor Q(x, y) and look for candidate polynomials p

among factors of form y − p(x).

(If t > D/r, this will find all relevant polynomials p.)
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Summary

With appropriate multiplicity, and appropriate “degree”, get

Theorem: [Guruswami-S.’98]: Can solve decoding problem

in polynomial time if # agreements >
√

kn.

Generalizations: Leads to nice definition of codes based on

ideals in commutative rings.
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An Additional Benefit

Can handle weighting of points (not conceivable earlier ...)

1

2 2

1

1
1

1

3

3

1

11

2 2

Sample question:

Find lines through points

of total weight ≥ 7.

Solution strategy:

Fit curve that passes thru pts

in proportion to their weights
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Weighted Reed-Solomon Decoding

Given: n points (αi, yi) ∈ F
2
q; and weights wi;

Agreement parameter W

Task: Find all deg. k poly’s p s.t.
∑

i:p(αi)=yi
wi ≥ W .

Thm [Guruswami-S.’98]: Can solve above efficiently if

W >
√

k
∑

i w
2
i .

Left open in [GS’98]: When do weights make sense? What

weights to use?
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[Koetter-Vardy’01]: Algebraic Soft-Decision Decoding

• Starting Point: Weighted Reed-Solomon Decoding.

• Major Issues Addressed:

− How to assign weights for specific channels? Non-trivial,

even for “trivial” channels.

− How to improve runtime (when running this complex

procedure)?

• Consequence: Dramatic improvement in performance of

RS codes, in some cases; “WSJT” (publicly available Ham

Radio software) reports “3dB” gain using KV algorithm.
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Summary

• List decoding is meaningful, useful, and feasible.

• Demonstrates that a little extra computational power can

cope with much more errors.

• Already has changed the theoretical perspective on ability

to cope with errors.

• Challenge ahead: Any more practical uses?
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