TSPortraits of Knots and Links

Robert Bosch

May 13, 2009

. . ••

Hands

INFORMS 06

Pittsburgh, PA

What's Inside?

INFORMS 06 Pittsburgh PA

JMM 2007 San Diego CA

Bridges 2007 Donostia, Spain

This is!

INFORMS 06 Pittsburgh PA

JMM 2007 San Diego CA

Bridges 2007 Donostia, Spain

One loop variation 1

INFORMS 06 Pittsburgh PA

One loop variation 2

INFORMS 06 Pittsburgh PA

One loop variation 3

INFORMS 06 Pittsburgh PA

Knot?

CPAIOR06 Cork, Ireland

JMM 2007 New Orleans, LA

Bridges 2007 Donostia, Spain

One fish, two fish, red fish, black fish

JMM 2008 San Diego, CA Bridges 2008 Leeuwarden, NL

Outside Ring

JMM 2008 San Diego, CA

Bridges 2008 Leeuwarden, NL

Solving TSPs with IP:

Eighth Judicial Circuit traveled by Lincoln in 1850.

Objective: minimize length of tour total cost = $\Sigma (c_e x_e : \text{all edges } e)$

Constraints: each city v must be touched twice $\Sigma(x_e: \text{ all edges } e \text{ that touch } v) = 2$

Solving TSPs with IP (DFJ formulation):

Variables: $x_e = 1$ if edge *e* is used in the tour

Objective: minimize length of tour total cost = $\Sigma (c_e x_e : \text{all edges } e)$

Constraints: each city v must be touched twice $\Sigma(x_e: \text{ all edges } e \text{ that touch } v) = 2 \quad \forall v$

Constraints: no subtours are allowed

 Σ (x_e : all *e* w/both endpts in S) < |S| $\forall S$

An example:

Stage 1: 6 subtours.

Stage 1: 6 subtours.

Stage 2: 4 more subtours.

Stage 3: 4 more subtours.

Stage 4: 3 more subtours.

Stage 5: success!

Definition:

$\chi(l_{A,B}) = \{ \text{ all edges } e \text{ that cross line } l_{A,B} \}$

Definition:

 $\chi(l_{A,B}) = \{ \text{ all edges } e \text{ that cross line } l_{A,B} \}$

Note:

A and B lie on the same side of the tour

 $\Sigma(x_e : \text{all edges } e \text{ in } \chi(l_{A,B}))$ is even

 $\Sigma (x_e : \text{all edges } e \text{ in } \chi(l_{A,B})) = 2 y_{A,B}$

Definition:

 $\chi(l_{A,B}) = \{ \text{ all edges } e \text{ that cross line } l_{A,B} \}$

Equivalently:

A and B lie on opposite sides of the tour

 $\Sigma(x_e: \text{all edges } e \text{ in } \chi(l_{A,B}))$ is odd

 $\Sigma (x_e : \text{all edges } e \text{ in } \chi(l_{A,B})) = 2 y_{A,B} + 1$

The 'Big' Idea:

Use

 $\Sigma (x_e : \text{all edges } e \text{ in } \chi(l_{A,B})) = 2 y_{A,B}$ and/or $\Sigma (x_e : \text{all edges } e \text{ in } \chi(l_{A,B})) = 2 y_{A,B} + 1$ in the DFJ IP formulation.

References

- R. Bosch and A. Herman. 2004. Continuous line drawings via the traveling salesman problem. *Operations Research Letters* 32: 302-303.
- C.S. Kaplan and R. Bosch. 2005. TSP art. Bridges 2005.
- R. Bosch. 2008. Connecting the dots: the ins and outs of TSP Art. *Bridges 2008.*
- R. Bosch. 2009. Jordan as a Jordan Curve. In *Mathematical Wizardry for a Gardner,* A.K. Peters, Natick, MA.

